

Question	er		Guidance
1 (b)	O_2N NO_2 O_2N NO_2 NO_2 NO_2	2	ALLOW any correct unambiguous structures ALLOW NO ₂ Note: connectivity is NOT being assessed in this part
1 (c)	1st stage isomer: isomer 3 \checkmark product: H_2N H_2 \checkmark reagents: Sn AND (conc) HCl \checkmark equation: H_3 H_2 $+$ 12 [H] H_2N H_2 $+$ 4 H ₂ O H_2N H_2 \checkmark		 ANNOTATIONS MUST BE USED ALLOW structure of isomer 3 shown separately OR in equation ALLOW structure of product shown separately OR in equation ALLOW correct name (3,5-diaminomethylbenzene) IGNORE incorrect name DO NOT ALLOW CH₃C₆H₃(NH₂)₂ ALLOW Zn + HCl/H₂ + metal catalyst/LiAlH₄/Na in ethanol IGNORE NaBH₄ ALLOW Sn and HCl followed by NaOH DO NOT ALLOW Sn and HCl and NaOH IF isomer 3 OR product are given in equation but not shown previously then credit here Also credit reagents here if shown (<i>eg</i> above arrow) ALLOW correct structural OR displayed OR skeletal formula ALLOW combination of formulae as long as unambiguous

Q	Jesti	on	er M		Guidance
	(c)	(i)	2nd stage organic compound: HOOC–CH₂–COOH ✓	6	$\begin{array}{c} \begin{array}{c} & & & \\ & & \\ & & \\ & & \\ & & \\ \end{array} \\ \begin{array}{c} \textbf{DO NOT ALLOW molecular formula} \\ \end{array} \\ \begin{array}{c} \textbf{ALLOW name of compound:} \\ propanedioic acid \textbf{OR propane-1,3-dioic acid} \\ \textbf{ALLOW absence of 'e' after 'propan'} \\ \begin{array}{c} \textbf{ALLOW absence of 'e' after 'propan'} \\ \end{array} \\ \begin{array}{c} \textbf{ALLOW acyl dichloride: CIOC-CH_2-COCl} \\ \textbf{ALLOW cyclic acid anhydride of propanedioic acid:} \\ \end{array} \\ \begin{array}{c} \textbf{O} = \textbf{C} \\ \hline \textbf{O} \\ \hline \textbf{O} \\ \hline \textbf{O} \end{array} \\ \end{array} \\ \begin{array}{c} \textbf{CH}_2 \\ \textbf{O} \\ \hline \textbf{O} \\ \hline \textbf{O} \\ \hline \textbf{O} \\ \hline \textbf{O} \end{array} \\ \end{array} $
			<i>type of polymer</i> . polyamide ✓		ALLOW Nylon or Kevlar DO NOT ALLOW polypeptide DO NOT ALLOW amide
				Total 12	

G	Question		Expected Answers	Marks	Additional Guidance
2	(a)		$\langle \bigcirc \rangle$ + Br ₂ \longrightarrow $\langle \bigcirc \rangle$ Br + HBr \checkmark	1	ALLOW $C_6H_6 + Br_2 \longrightarrow C_6H_5Br + HBr$ DO NOT ALLOW multiple substitution DO NOT ALLOW Br^+
	(b)	(i)	White precipitate OR white solid OR white crystals \checkmark	2	DO NOT ALLOW colourless DO NOT ALLOW white ppt <u>and</u> bubbles DO NOT ALLOW Br ₃ C ₆ H ₂ OH OR 2,4,6-tribromophenol OR tribromophenol
		(ii)	1,2-Dibromocyclohexane ✓	1	ALLOW 1,2dibromocyclohexane OR 1-2dibromocyclohexane OR 12dibromocyclohexane OR cyclo-1,2-dibromohexane DO NOT ALLOW dibromocyclohexane OR C ₆ H ₁₀ Br ₂ OR structures
		(iii)	MUST spell <u>delocalised/delocalized</u> or <u>localised/localized</u> correctly once in the answer to obtain all 5 marks benzene <u>electrons</u> or <u>m-bonds</u> are delocalised \checkmark phenol a <u>lone</u> or <u>non-bonded</u> pair of electrons on the oxygen or the OH group is (partially) delocalised into the ring \checkmark cyclohexene electrons are localised OR delocalised between two carbons \checkmark benzene has a lower electron density OR phenol has a higher electron density OR cyclohexene has a higher electron density \checkmark benzene cannot polarise or induce a dipole in Br ₂ OR phenol can polarise the Br ₂ OR cyclohexene can polarise Br ₂ or the Br–Br bond \checkmark	5	 ALLOW diagram to show overlap of all 6 p-orbitals for delocalisation DO NOT ALLOW benzene has delocalised structure or ring ALLOW diagram to show movement of lone pair into ring for phenol ALLOW diagram or description of overlap of 2 adjacent p-orbitals for bonding in cyclohexene DO NOT ALLOW cyclohexene has a C=C double bond IGNORE slip if cyclohexene is written as cyclohexane but π - bonding correctly described DO NOT ALLOW charge density OR electronegativity instead of electron density ALLOW Br^{δ+} OR electrophile Br⁺ as alternate to polarise

PhysicsAndMathsTutor.com

Q	luesti	on	Answer	Mark	Guidance
3	(a)	(i)	M1	4	ANNOTATE ANSWER WITH TICKS AND CROSSES ETC
			p-orbitals overlap (to form pi/ π -bonds) \checkmark		IGNORE p-orbitals overlap to form sigma bonds
			M2 π-bond(s) are <u>delocalised</u> in structure B \checkmark		ALLOW electrons are delocalised in structure B IGNORE B has delocalised structure or ring (must be electrons or π -bonds)
			M3 π-bonds are localised/between two carbons in structure A		ALLOW π -electrons/p-orbital overlap localised/between two carbons in structure A ALLOW p-orbitals overlap with one other carbon IGNORE electrons are localised OR structure A has localised structure (must be π -bonds/ π -electrons/p-orbital overlap) ALLOW labelled diagram showing overlap of p-orbitals between two carbon atoms DO NOT ALLOW C=C in this diagram
			AND AND		Diagram for structure A must show the full ring for M4 IGNORE C=C in M4 diagram
			Diagrams show correct position of delocalised and localised π -bonds/ π -electrons		IGNORE charge density
					DO NOT ALLOW electronegativity
			OR correct position of p-orbital overlap ✓		Structures do not need to be labelled A and B if the description matches the structure
			requires delocalised/delocalized spelled correctly and used in correct context		

Q	Question		Answer	Mark	Guidance
		(ii)	structure B/delocalised structure is (more) stable	2	ALLOW structure B is low in energy
			\checkmark		IGNORE structure B is less reactive
			structure B is a better because (enthalpy change of hydrogenation for benzene is) less		ALLOW enthalpy change/hydrogenation for benzene is less (negative) than $3 \times (-)119$
			(exothermic) than (-) 357 (kJ mol ⁻¹)		IGNORE more positive than (-)357 kJ mol ⁻¹
			\checkmark		ALLOW enthalpy change is less than 3x enthalpy change for cyclohexene
					ALLOW structure B is more stable by 149 kJ mol ⁻¹ (2 marks)
					DO NOT ALLOW more/less energy needed for the reaction
					Answer must refer to data given in the question and must be a comparison
					IGNORE 360 kJ mol ⁻¹
					No marks can be awarded if structure A is selected
	(b)			2	
					First curly arrow must come from bond not from C atom
			curly arrow from C–N bond to N^+ 🗸		ALLOW first curly arrow to nitrogen atom OR to positive charge on nitrogen atom
					ALLOW second curly arrow from negative charge on fluoride ion
			curly arrow from lone pair on fluoride ion to positive charge on benzene ring		ALLOW second curly arrow to carbon atom with positive charge

Q	uesti	on	Answer	Mark	Guidance
	(c)		$(CH_3)_2CHBr + FeBr_3 \longrightarrow (CH_3)_2CH^+ + FeBr_4^-$	1	ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous
					ALLOW positive charge anywhere on the electrophile
					IGNORE AICI ₃ OR AIBr ₃
	(d)	(i)	First reactant = $HNO_2 \checkmark$	3	ALLOW NaNO ₂ + HCI OR HNO ₂ + HCI
					IGNORE conditions/concentration
			Second reactant =		
			\sim		ALLOW correct structural OR displayed OR skeletal formulae
			Br		OR a combination of above as long as unambiguous
			BrNH ₂		
			-		
			Third reactant =		ALLOW
					0
					CI NH2
			0		
			Ŭ, NH₂		ĬOÌ
			HO		ОН

Question	Answer	Mark	Guidance
(ii)	FIRST CHECK THE ANSWER ON THE ANSWER LINE IF answer = 1.35 (g) award 3 marks IF answer = 0.54 (g) award 2 marks (no scale-up) IF answer = 0.216 (g) award 2 marks (incorrect scale-up) <i>n</i> (compound D) = 1.73/346 = 0.00500 mol \checkmark <i>n</i> (1,3-diaminobenzene) required = 100/40 x 0.005 = 0.0125 mol \checkmark Molar mass of 1,3-diaminobenzene = 108 (g mol ⁻¹) AND Mass of 1,3-diaminobenzene = (108)(0.0125) = 1.35 g \checkmark	3	ANNOTATE ANSWER WITH TICKS AND CROSSES ETC If there is an alternative answer, check to see if there is any ECF credit possible ALLOW ECF from incorrect amount, scale-up or molar mass Alternative 1 n(compound D) = $1.73/346 = 0.00500$ mol Molar mass of 1,3-diaminobenzene = 108 (g mol ⁻¹) AND Mass of 1,3-diaminobenzene = $(0.00500)(108) = 0.540$ g Mass of 1,3-diaminobenzene required = $(0.540)(100/40) =$ 1.35 g Alternative 2 346 g gives 108 g 1.73 g gives 108/364 x 1.73 = 0.54 g 0.54/40 x100 = 1.35 g
(iii)	(compound D has) two chiral centres ✓	3	ALLOW (Compound D) has two asymmetric carbons OR has two stereocentres
	Four optical isomers exist ✓		ALLOW four enantiomers OR two pairs of enantiomers
	(Synthesis could) use enzymes OR bacteria OR use (chemical) chiral synthesis OR <u>chiral</u> catalysts OR use natural chiral molecules OR single isomers (as starting materials)		INDEPENDENT MARK ALLOW biological catalysts ALLOW <u>chiral</u> transition metal complex/catalyst OR <u>stereoselective</u> transition metal complex/catalyst ALLOW ' <u>chiral</u> pool'/chiral auxiliary
	Total	18	